
Interior eigenvectors of symmetric matrices are saddle points*
G. H. Brown and E. V. Solomonik

Every eigenvector of a symmetric matrix is a critical point of the Rayleigh quotient

R (A,x) =
xTAx

xTx
, ∥x∥22 ̸= 0. (1)

In fact, this relationship can be used to define matrix eigenvalues, with the critical point condition on the

Rayleigh quotient being the eigenpair equation Ax = λx. 1

Obvserve from the eigenpair equation that the eigenvector magnitude is unimportant so long as it is

nonzero, which motivates the common choice to 2-normalize eigenvectors. If one does this, all eigenvectors

of A ∈ Rn×n lie on the unit (n − 1)-sphere, and the extreme value theorem can be used to prove that all

symmetric matrices with n ≥ 2 must have at least two eigenvectors, corresponding to the maximum and

minimum of the Rayeleigh quotient. However, this only classifies O(1) critical points. What can be said of

the other n− 2 critical points compirising the interior of the spectrum?

To answer this question, consider an interior eigenpair (xi, λi) of a symmetric matrix A with n > 2

and some scaled vector βxj in the direction of eigenvector xj . Let the respective norms of xi,xj be αi, αj .
2 The Rayleigh quotient at xi + βxj is
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where we’ve expanded and used the symmetry of A between the first two steps. Between the last two steps

we utilized xi and xj being eigenvectors of A and the fact that eigenvectors of symmetric matrices are

mutually orthogonal. The change in Rayleigh quotient from the original critical point xi is then

R (A,xi + βxj)−R(A,xi) =
(λj − λi)β

2α2
j

α2
i + β2α2

j

(5)

Note that the sign of the quantity above depends only on λj − λi since all other quantities are defined

to be positive real numbers. So for an interior eigenpair λi there exist at least two unique values of j such

that λj − λi < 0 and λj − λi > 0, for concreteness one can choose j = 1, n for spectrum λ1 < ... < λn.
3 Therefore, any interior eigenvector xi has an arbitrarily close point (we placed no magnitude restrictions

on β) that is larger in Rayleigh quotient and another point that is smaller. This condition defines a saddle

point.

1The gradient of the Rayleigh quotient is 2 Ax
xT x

− 2 xTAx

(xT x)2
x. Critical points are defined by a zero gradient, and using the

nonzero norm condition on x one finds Ax − R(A,x)x = 0. Recognizing that the Rayleigh quotient is a scalar (call it λ), we

recover the familiar Ax = λx. At first, it may appear replacing the Rayleigh quotient by some arbitrary scalar could define

different conditions if there exists λ such that Ax = λx, but λ ̸= R(A,x). However, this is not possible, which one can prove by

taking the inner product of the of the eigenpair equation with eigenvector x and rearranging to show that any scalar satisfying

the eigenpair equation is precisely the Rayleigh quotient defined by the matrix and eigenvector.
2Although employing the extreme value theorem requires a compact domain like the (n− 1)-sphere, one can classify interior

eigenpairs without such a closed domain. Furthermore, it is trivial to reformulate this proof to work on the (n− 1)-sphere.
3* This enforces algebraic multiplicity one for all all eigenvalues. When the spectrum has algebraic multiplicity greater than

one at the edges (i.e. λ1 = λ2 < ... for the lower end), it is possible to show that this cluster of eigenpairs are all local minima

or maxima by observing that the eigenvectors form a basis for Rn, and so there exist no directions that decrease the Rayleigh

quotient, respectively. Similar arguments apply for degenerate maxima at the top of the spectrum.


