Interior eigenvectors of symmetric matrices are saddle points*
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Every eigenvector of a symmetric matrix is a critical point of the Rayleigh quotient
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R(A,x) = , 3 # 0. (1)

In fact, this relationship can be used to define matrix eigenvalues, with the critical point condition on the
Rayleigh quotient being the eigenpair equation Ax = Ax. E|

Obvserve from the eigenpair equation that the eigenvector magnitude is unimportant so long as it is
nonzero, which motivates the common choice to 2-normalize eigenvectors. If one does this, all eigenvectors
of A € R™*" lie on the unit (n — 1)-sphere, and the extreme value theorem can be used to prove that all
symmetric matrices with n > 2 must have at least two eigenvectors, corresponding to the maximum and
minimum of the Rayeleigh quotient. However, this only classifies O(1) critical points. What can be said of
the other n — 2 critical points compirising the interior of the spectrum?

To answer this question, consider an interior eigenpair (x;,\;) of a symmetric matrix A with n > 2
and some scaled vector 8x; in the direction of eigenvector x;. Let the respective norms of x;,x; be oy, a;.
E| The Rayleigh quotient at x; + x; is
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where we’ve expanded and used the symmetry of A between the first two steps. Between the last two steps
we utilized x; and x; being eigenvectors of A and the fact that eigenvectors of symmetric matrices are

mutually orthogonal. The change in Rayleigh quotient from the original critical point x; is then
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Note that the sign of the quantity above depends only on A; — A; since all other quantities are defined
to be positive real numbers. So for an interior eigenpair A; there exist at least two unique values of j such
that A; —A; < 0 and A\; — A; > 0, for concreteness one can choose j = 1,n for spectrum A; < ... < A,.
E| Therefore, any interior eigenvector x; has an arbitrarily close point (we placed no magnitude restrictions
on () that is larger in Rayleigh quotient and another point that is smaller. This condition defines a saddle
point.

xTAx
XTX 2

IThe gradient of the Rayleigh quotient is 2xAT—’; -2 x. Critical points are defined by a zero gradient, and using the

nonzero norm condition on x one finds Ax — R(A,x)x = 0. Recognizing that the Rayleigh quotient is a scalar (call it \), we
recover the familiar Ax = Ax. At first, it may appear replacing the Rayleigh quotient by some arbitrary scalar could define
different conditions if there exists A such that Ax = Ax, but A # R(A, x). However, this is not possible, which one can prove by
taking the inner product of the of the eigenpair equation with eigenvector x and rearranging to show that any scalar satisfying
the eigenpair equation is precisely the Rayleigh quotient defined by the matrix and eigenvector.

2 Although employing the extreme value theorem requires a compact domain like the (n — 1)-sphere, one can classify interior
eigenpairs without such a closed domain. Furthermore, it is trivial to reformulate this proof to work on the (n — 1)-sphere.

3% This enforces algebraic multiplicity one for all all eigenvalues. When the spectrum has algebraic multiplicity greater than
one at the edges (i.e. A1 = A2 < ... for the lower end), it is possible to show that this cluster of eigenpairs are all local minima
or maxima by observing that the eigenvectors form a basis for R™, and so there exist no directions that decrease the Rayleigh
quotient, respectively. Similar arguments apply for degenerate maxima at the top of the spectrum.



